skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Makarov, Dmitrii E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The trajectory of a molecular system undergoing a reversible reaction A ⇌ B and crossing and recrossing a transition state separating the reactant and product consists of loops, i.e., excursions from the transition state to either side and back to the transition state. Motivated by recent experimental observations of loops, here, we discuss some of their statistical properties. In particular, we highlight that the transition-state rate is not only an upper bound on the true reaction rate but also a physical property of the loops. We further find that loops can be unambiguously divided into two sub-ensembles. Those consist of short loops, which are brief excursions from the transition state, and long loops that get trapped in the reactant or product wells before eventually returning to the barrier. Finally, we show that the loop time distribution contains information about both the reaction rate coefficients and their transition-state-theory counterparts. 
    more » « less
    Free, publicly-accessible full text available August 7, 2026
  2. We investigate the transient and steady-state dynamics of the Bennati-Dragulescu-Yakovenko money game in the presence of probabilistic cheaters, who can misrepresent their financial status by claiming to have no money. We derive the steady-state wealth distribution per player analytically, and we show how the presence of hidden cheaters can be inferred from the relative variance of wealth per player. In scenarios with a finite number of cheaters amidst an infinite pool of honest players, we identify a critical probability of cheating at which the total wealth owned by the cheaters experiences a second-order discontinuity. Below this point, the transition probability to lose money is larger than the probability to gain; conversely, above this point, the direction is reversed. We further establish a threshold cheating probability at which cheaters collectively possess half of the total wealth in the game. Lastly, we provide bounds on the rate at which both cheaters and honest players can gain or lose wealth, contributing to a deeper understanding of deception in asset-exchange models. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available February 6, 2026
  4. Inferring underlying microscopic dynamics from low-dimensional experimental signals is a central problem in physics, chemistry, and biology. As a trade-off between molecular complexity and the low-dimensional nature of experimental data, mesoscopic descriptions such as the Markovian master equation are commonly used. The states in such descriptions usually include multiple microscopic states, and the ensuing coarse-grained dynamics are generally non-Markovian. It is frequently assumed that such dynamics can nevertheless be described as a Markov process because of the timescale separation between slow transitions from one observed coarse state to another and the fast interconversion within such states. Here, we use a simple model of a molecular motor with unobserved internal states to highlight that (1) dissipation estimated from the observed coarse dynamics may significantly underestimate microscopic dissipation even in the presence of timescale separation and even when mesoscopic states do not contain dissipative cycles and (2) timescale separation is not necessarily required for the Markov approximation to give the exact entropy production, provided that certain constraints on the microscopic rates are satisfied. When the Markov approximation is inadequate, we discuss whether including memory effects can improve the estimate. Surprisingly, when we do so in a “model-free” way by computing the Kullback–Leibler divergence between the observed probability distributions of forward trajectories and their time reverses, this leads to poorer estimates of entropy production. Finally, we argue that alternative approaches, such as hidden Markov models, may uncover the dissipative nature of the microscopic dynamics even when the observed coarse trajectories are completely time-reversible. 
    more » « less
    Free, publicly-accessible full text available January 21, 2026
  5. A recent ground-breaking experimental study [Lyons et al., Phys. Rev. X 14(1), 011017 (2024)] reports on measuring the temporal duration and the spatial extent of failed attempts to cross an activation barrier (i.e., “loops”) for a folding transition in a single molecule and for a Brownian particle trapped within a bistable potential. Within the model of diffusive dynamics, however, both of these quantities are, on average, exactly zero because of the recrossings of the barrier region boundary. That is, an observer endowed with infinite spatial and temporal resolution would find that finite loops do not exist (or, more precisely, form a set of measure zero). Here we develop a description of the experiment that takes the “fuzziness” of the boundaries caused by finite experimental resolution into account and show how the experimental uncertainty of localizing the point, in time and space, where the barrier is crossed leads to observable distributions of loop times and sizes. Although these distributions generally depend on the experimental resolution, this dependence, in certain cases, may amount to a simple resolution-dependent factor and, therefore, the experiments do probe inherent properties of barrier crossing dynamics. 
    more » « less
  6. Single-molecule fluorescence resonance energy transfer (FRET) experiments are commonly used to study the dynamics of molecular machines. While in vivo molecular processes often break time-reversal symmetry, the temporal directionality of cyclically operating molecular machines is often not evident from single-molecule FRET trajectories, especially in the most common two-color FRET studies. Solving a more quantitative problem of estimating the energy dissipation/entropy production by a molecular machine from single-molecule data is even more challenging. Here, we present a critical assessment of several practical methods of doing so, including Markov-model-based methods and a model-free approach based on an information-theoretical measure of entropy production that quantifies how (statistically) dissimilar observed photon sequences are from their time reverses. The Markov model approach is computationally feasible and may outperform model free approaches, but its performance strongly depends on how well the assumed model approximates the true microscopic dynamics. Markov models are also not guaranteed to give a lower bound on dissipation. Meanwhile, model-free, information-theoretical methods systematically underestimate entropy production at low photoemission rates, and long memory effects in the photon sequences make these methods demanding computationally. There is no clear winner among the approaches studied here, and all methods deserve to belong to a comprehensive data analysis toolkit. 
    more » « less
  7. Many nonequilibrium, active processes are observed at a coarse-grained level, where different microscopic configurations are projected onto the same observable state. Such “lumped” observables display memory, and in many cases, the irreversible character of the underlying microscopic dynamics becomes blurred, e.g., when the projection hides dissipative cycles. As a result, the observations appear less irreversible, and it is very challenging to infer the degree of broken time-reversal symmetry. Here we show, contrary to intuition, that by ignoring parts of the already coarse-grained state space we may—via a process called milestoning—improve entropy-production estimates. We present diverse examples where milestoning systematically renders observations “closer to underlying microscopic dynamics” and thereby improves thermodynamic inference from lumped data assuming a given range of memory, and we hypothesize that this effect is quite general. Moreover, whereas the correct general physical definition of time reversal in the presence of memory remains unknown, we here show by means of physically relevant examples that at least for semi-Markov processes of first and second order, waiting-time contributions arising from adopting a naive Markovian definition of time reversal generally must be discarded. 
    more » « less
  8. Abstract Many-body dynamical models in which Boltzmann statistics can be derived directly from the underlying dynamical laws without invoking the fundamental postulates of statistical mechanics are scarce. Interestingly, one such model is found in econophysics and in chemistry classrooms: the money game, in which players exchange money randomly in a process that resembles elastic intermolecular collisions in a gas, giving rise to the Boltzmann distribution of money owned by each player. Although this model offers a pedagogical example that demonstrates the origins of Boltzmann statistics, such demonstrations usually rely on computer simulations. In fact, a proof of the exponential steady-state distribution in this model has only become available in recent years. Here, we study this random money/energy exchange model and its extensions using a simple mean-field-type approach that examines the properties of the one-dimensional random walk performed by one of its participants. We give a simple derivation of the Boltzmann steady-state distribution in this model. Breaking the time-reversal symmetry of the game by modifying its rules results in non-Boltzmann steady-state statistics. In particular, introducing ‘unfair’ exchange rules in which a poorer player is more likely to give money to a richer player than to receive money from that richer player, results in an analytically provable Pareto-type power-law distribution of the money in the limit where the number of players is infinite, with a finite fraction of players in the ‘ground state’ (i.e. with zero money). For a finite number of players, however, the game may give rise to a bimodal distribution of money and to bistable dynamics, in which a participant’s wealth jumps between poor and rich states. The latter corresponds to a scenario where the player accumulates nearly all the available money in the game. The time evolution of a player’s wealth in this case can be thought of as a ‘chemical reaction’, where a transition between ‘reactants’ (rich state) and ‘products’ (poor state) involves crossing a large free energy barrier. We thus analyze the trajectories generated from the game using ideas from the theory of transition paths and highlight non-Markovian effects in the barrier crossing dynamics. 
    more » « less
  9. Yong, Xin (Ed.)
    Knots in proteins and DNA are known to have significant effect on their equilibrium and dynamic properties as well as on their function. While knot dynamics and thermodynamics in electrically neutral and uniformly charged polymer chains are relatively well understood, proteins are generally polyampholytes, with varied charge distributions along their backbones. Here we use simulations of knotted polymer chains to show that variation in the charge distribution on a polyampholyte chain with zero net charge leads to significant variation in the resulting knot dynamics, with some charge distributions resulting in long-lived metastable knots that escape the (open-ended) chain on a timescale that is much longer than that for knots in electrically neutral chains. The knot dynamics in such systems can be described, quantitatively, using a simple one-dimensional model where the knot undergoes biased Brownian motion along a “reaction coordinate”, equal to the knot size, in the presence of a potential of mean force. In this picture, long-lived knots result from charge sequences that create large electrostatic barriers to knot escape. This model allows us to predict knot lifetimes even when those times are not directly accessible by simulations. 
    more » « less